The essential spectrum of canonical systems
نویسندگان
چکیده
منابع مشابه
The Absolutely Continuous Spectrum of Discrete Canonical Systems
We prove that if the canonical system J(yn+1 − yn) = zHnyn has absolutely continuous spectrum of a certain multiplicity, then there is a corresponding number of linearly independent solutions y which are bounded in a weak sense.
متن کاملSpectrum and essential spectrum of linear combinations of composition operators on the Hardy space H2
Let -----. For an analytic self-map --- of --- , Let --- be the composition operator with composite map --- so that ----. Let --- be a bounded analytic function on --- . The weighted composition operator --- is defined by --- . Suppose that --- is the Hardy space, consisting of all analytic functions defined on --- , whose Maclaurin cofficients are square summable. .....
متن کاملDetermining the order of minimal realization of descriptor systems without use of the Weierstrass canonical form
A common method to determine the order of minimal realization of a continuous linear time invariant descriptor system is to decompose it into slow and fast subsystems using the Weierstrass canonical form. The Weierstrass decomposition should be avoided because it is generally an ill-conditioned problem that requires many complex calculations especially for high-dimensional systems. The present ...
متن کاملDecomposing the Essential Spectrum
We use C∗-algebra theory to provide a new method of decomposing the essential spectra of self-adjoint and non-self-adjoint Schrödinger operators in one or more space dimensions.
متن کاملEssential Spectrum of the Linearized
In this note we continue the work in [SL], and give a full description of the essential spectrum for the linearized Euler operator L in dimension two. We prove that the essential spectrum of the operator is one solid vertical strip symmetric with respect to the imaginary axis. The width of the strip is determined by the maximal Lyapunov exponent Λ for the flow induced by the steady state. For c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2020
ISSN: 0021-9045
DOI: 10.1016/j.jat.2020.105395